
SSD-2: Scaling and Inference-time Fusion of Diffusion Language Models

Xiaochuang Han♠♢ Sachin Kumar♣
Yulia Tsvetkov♠ Marjan Ghazvininejad♢

♠University of Washington ♢Meta AI ♣Carnegie Mellon University
{xhan77, yuliats}@cs.washington.edu♠ sachink@cs.cmu.edu♣ ghazvini@meta.com♢

Abstract

Diffusion-based language models (LMs) have
been shown to be competent generative mod-
els that are easy to control at inference and
are a promising alternative to autoregressive
LMs. While autoregressive LMs have benefited
immensely from scaling and instruction-based
learning, existing studies on diffusion LMs
have been conducted on a relatively smaller
scale. Starting with a recently proposed diffu-
sion model SSD-LM, in this work we explore
methods to scale it from 0.4B to 13B parame-
ters, proposing several techniques to improve
its training and inference efficiency. We call
the new model SSD-2. We further show that
this model can be easily finetuned to follow in-
structions. Finally, leveraging diffusion models’
capability at inference-time control, we show
that SSD-2 facilitates novel ensembles with
100x smaller models that can be customized
and deployed by individual users. We find that
compared to autoregressive models, the col-
laboration between diffusion models is more
effective, leading to higher-quality and more
relevant model responses due to their ability to
incorporate bi-directional contexts.

1 Introduction

Following the footsteps of diffusion-based gener-
ative models for continuously valued data such
as images, audio, video, among others (Ho et al.,
2020; Kong et al., 2021; Ho et al., 2022), recent
works have attempted to replicate their success on
discrete text data (Austin et al., 2021; Li et al.,
2022c; Han et al., 2022; Strudel et al., 2022; Diele-
man et al., 2022). Indeed, several studies have
shown that diffusion-based language models (LMs)
perform competitively to their autoregressive coun-
terparts, and even surpass them at post hoc control-
lable text generation (Li et al., 2022c; Han et al.,
2022).

Meanwhile, we have witnessed a surge in the use
of autoregressive language models in both research

Figure 1: Inference-time collaboration between a large
core model θcore and a small user model θuser incorporat-
ing user-specified knowledge Duser. The collaboration
between autoregressive models (upper) performs decod-
ing token-by-token, while the collaboration between
diffusion models (lower) refines a block of generated
tokens iteratively with bi-directional contexts.

and end-user applications (Brown et al., 2020; Tou-
vron et al., 2023). They have emerged as general-
purpose solutions capable of holding conversations
with humans and solving many tasks by follow-
ing natural language instructions (Ouyang et al.,
2022; Wang et al., 2022; Longpre et al., 2023; Taori
et al., 2023; Chiang et al., 2023; Xu et al., 2023).
These abilities are primarily due to two factors:
scaling the model parameters as well as pretraining
datasets, and instruction finetuning the pretrained
models with carefully curated datasets (Ouyang
et al., 2022). In this work, we present an ex-
ploratory study to scale and incorporate instruc-
tion following and conversational capabilities in
diffusion-based LMs.

We introduce SSD-2, an improved version of
recently introduced simplex-based diffusion LM
SSD-LM (Han et al., 2022) proposing several mod-



ifications to its training and inference procedures.
For example, we add a special attention masking
strategy to improve its training efficiency, self-
conditioning (Chen et al., 2022) and an early stop-
ping criterion to improve its inference efficiency,
and an end-of-sequence padding trick to better en-
able variable-length generations. We incorporate
these improvements in scaling SSD-2 to 13B pa-
rameters, up from 0.4B in SSD-LM. Further, we
show that similar to autoregressive LMs, by fine-
tuning with curated instructional datasets, SSD-2
is well suited to follow instructions.

Finally, we illustrate a unique advantage of in-
struction tuned diffusion LMs—inference time col-
laboration. We show that multiple diffusion LMs
with different capabilities can be easily ensembled
at the sequence level at test time, leveraging ad-
vantages of each LM in the ensemble. We present
a case study highlighting one such scenario: we
augment a general-purpose large SSD-2 model
with 13B parameters with a 100x smaller, user-
accessible model. This setup allows incorporat-
ing user-provided knowledge into the generation
process without directly inputting it into the large
model (which can be undesirable due to cost or pri-
vacy reasons). We show that SSD-2’s instruction
finetuned model is substantially more effective at
this collaboration than the autoregressive baselines,
leveraging bi-directional contexts in the ensemble.

Overall, through investigating approaches to
build a chat model over an improved simplex-based
diffusion LM, this work shows the feasibility and
challenges of the problem, and more interestingly,
the promises of using diffusion chat models in a
collaborative setup.1

2 Background

Semi-autoregressive simplex-based diffusion lan-
guage model (SSD-LM) is trained to generate text
in blocks of tokens by performing diffusion in
the simplex space of the model vocabulary (Han
et al., 2022). For text continuation tasks, it has
shown competitive performance against autoregres-
sive models (e.g., GPT-2; Radford et al., 2019)
when trained with a similar number of model pa-
rameters and pretraining data. Furthermore, it nat-
urally enables post-hoc control in generated text
using off-the-shelf classifiers, outperforming prior

1We plan to release code and models upon paper publi-
cation and necessary approvals. Placeholder link: https:
//github.com/xhan77/ssd-2.

approaches to controlling autoregressive models.
Below we briefly overview the training and decod-
ing algorithm of SSD-LM.

Training The core idea behind the training of
diffusion models (Ho et al., 2020) is to add a se-
ries of progressive noise to the input data repre-
sentations and learn a model to reverse this pro-
cess, reconstructing the original data at different
noise levels. Assume we have a sequence of
tokens {w0, . . . , wc−1, wc, . . . , wc+B−1}, where
we want to condition on a context on length c,
{w0, . . . , wc−1} (or w<c), and learn to generate
the subsequent block of text {wc, . . . , wc+B−1}
(or wc:c+B) containing B tokens. In SSD-LM, a
progressive Gaussian noise is added to the block of
text wc:c+B .

w̃c:c+B
0 = logits-initialization(wc:c+B)

w̃c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

where logits-initialization(·) maps each discrete
token to a base, almost-one-hot logits repre-
sentation in the model’s vocabulary space V ,
{−K,+K}|V |. A noise schedule ᾱt controls the
level of noise added to the base representation,
where timestep t ∼ U(1, T ) and larger t means a
noisier representation.

SSD-LM’s training loss on wc:c+B is condi-
tioned both on the noisy representation w̃c:c+B

t

and the prior context w<c to the block.

Et[− log pθ(w
c:c+B | w̃c:c+B

t ,w<c)]

= Et

j<c+B∑
j=c

− log pθ(w
j | w̃c:c+B

t ,w<c)


The model has access to a locally bi-directional
context through the noisy representation. In con-
trast, the canonical autoregressive training loss for
wc:c+B would be

∑j<c+B
j=c − log pθ(w

j | w<j),
conditioned on the uni-directional left context only.

Decoding At inference time, given a context
w<c, SSD-LM generates a block wc:c+B through
an iterative denoising algorithm, backtracking the
noise timesteps from t = T to 1. Each iteration
t consists of three main steps: (1) predict logits
representation wc:c+B

logits,t for the decoding text block
using the learned model, (2) project the logits to an
almost-one-hot representation ŵc:c+B

t in the base
space {−K,+K}|V | (with optional modifications),
(3) add a Gaussian noise corresponding to timestep

https://github.com/xhan77/ssd-2
https://github.com/xhan77/ssd-2


t− 1 to the projected representation and proceed
to the next iteration.

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

ŵc:c+B
t = logits-projection(wc:c+B

logits,t)

w̃c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B
t +

√
1− ᾱt−1z

where θ is the trained diffusion model and w̃c:c+B
T

is initialized with a Gaussian noise.
We refer the readers to Han et al. (2022) for more

details about the algorithms of SSD-LM.

3 SSD-2

In this section, we first present SSD-2 building on
top of SSD-LM with several modifications to im-
prove its training and decoding efficiency. We train
SSD-2 with a larger pretraining corpus and more pa-
rameters (ranging from 0.1B to 13B) than SSD-LM.
We further show that SSD-2 can be instruction-
finetuned as a chat model, using an open source
instruction-following dataset, and benchmark the
model with strong autoregressive baselines.

3.1 Method
Figure 2 describes the training and decoding al-
gorithms of SSD-2. We highlight the changes in
SSD-2 over SSD-LM below.

Self-conditioning The core idea behind self-
conditioning (Chen et al., 2022) is that at iteration t,
the model takes as input not just the noised sample
w̃c:c+B

t , but also a clean output from the previous
timestep t+ 1, wc:c+B

logits,t+1. This allows the model
to reuse useful information in the previous predic-
tion and focus on refining it in the current timestep,
allowing convergence in fewer iterations. That is,
for T > t ≥ 1:

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,wc:c+B

logits,t+1,w
<c)

More specifically, the noisy representation w̃c:c+B
t

and the previous timestep prediction wc:c+B
logits,t+1 are

combined before the transformer blocks of θ, along
with the positional embeddings and timestep em-
beddings as follows:2

h̃ = Wdiff[sm(w̃t)] +Wpred[sm(wlogits,t+1)]

+ Embpos(c : c+B) + Embdiff-time(t/T )

2As a shorthand, we dropped the superscript for token po-
sitions c to c+B, and use sm for softmax, Emb for the em-
bedding layer, and Wdiff and Wpred for the embedding matrix
for the noisy representation and self-conditioning prediction.

h<c = Embctx(w
<c) + Embpos(< c)

+ Embctx-time(t/T )

wc:c+B
logits,t = Transformer[concat(h<c, h̃)]c:c+B

To train the model to learn to reuse the predicted
logits, we add an additional forward pass during
the training phase, activated with a probability p =
0.5. We predict wc:c+B

logits,t disabling gradient back-
propagation, and use it in the new cross entropy
loss − log pθ(w

j | w̃c:c+B
t ,wc:c+B

logits,t,w
<c).

Removing context length sampling for efficiency
The original training algorithm of SSD-LM first
samples a context length c ∼ U(1, |w| − B) for
each example, encodes the context bi-directionally
and computes the diffusion loss for a block of B
tokens following that context. The bi-directional
encoding of the context w<c cannot be shared
across different context sizes c for the same ex-
ample. Moreover, when the sequence length |w|
is large, a high variance in the sampled c across
devices in distributed training reduces the effective
batch size, slowing down the training considerably.
Therefore, in the pretraining and finetuning of SSD-
2, we eliminate sampling different c’s while equiv-
alently modeling the same training loss as shown
in Figure 2 for all |w|

B blocks in one data, by using
a special attention mask. The transformer modules
of SSD-2 encode the context w<c uni-directionally
while preserving the bi-directional attention for the
diffusion generation block wc:c+B . This leads to a
2x speedup in our pilot pretraining. More details
can be found in §A.

Sharded models across time-ranges and early
stopping in decoding We observe that at test
time SSD-2 often shows distinct behaviors at dif-
ferent timestep ranges. We empirically divide the
number of iterations into five ranges of equal sizes.
In the beginning of decoding (t ∈ (0.8T, T ]), when
the noise level is very high, there is no discernable
pattern in which the model’s intermediate predic-
tions (argmaxwc:c+B

logits,t) in different iterations differ
from each other. Larger changes often happen at
t ∈ (0.6T, 0.8T ] after which the majority of the
content is in place, and for t ∈ (0.4T, 0.6T ] only
minor changes happen sparsely to make a grammat-
ical correction or settle down on an uncertain word
choice. Finally, for t ∈ (0, 0.4T ], the sequence
does not update at all in most cases. We hence hy-
pothesize that the first three timestep ranges require
different capabilities from the model. In SSD-2,



Algorithm 1 Training (at a given c)

1: w̃c:c+B
0 = logits-initialization(wc:c+B)

2: t ∼ Uniform({1, . . . , T})
3: ϵ ∼ N (0,K2I)

4: w̃c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

5: r ∼ Bernoulli(0.5)
6: if r = 0 then
7: Take a gradient descent step on

∇θ[
∑j<c+B

j=c − log pθ(w
j | w̃c:c+B

t ,w<c)]
8: else
9: With gradient calculation disabled, calculate

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

10: Take a gradient descent step on
∇θ [

∑j<c+B
j=c − log pθ(w

j | w̃c:c+B
t ,wc:c+B

logits,t ,w<c)]

11: end if

Algorithm 2 Decoding (at a given c)

1: w̃c:c+B
T ∼ N (0,K2I)

2: for t = T, . . . , 1 do
3: if t = T then
4: wc:c+B

logits,t = logitsθ(w
c:c+B | w̃c:c+B

t ,w<c)
5: else
6: wc:c+B

logits,t = logitsθ(w
c:c+B | w̃c:c+B

t ,wc:c+B
logits,t+1,w

<c)

7: end if
8: Ensemble with other models if applicable,

all-reduceΘ,λ(w
c:c+B
logits,t )

9: ŵc:c+B = logits-projection(wc:c+B
logits,t )

10: z ∼ N (0,K2I)

11: w̃c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B +
√
1− ᾱt−1z

12: end for
13: return argmax w̃c:c+B

0

Figure 2: Training and decoding algorithms for SSD-2. The training algorithm describes the training objective at an
arbitrary context length c. The decoding algorithm can be applied multiple rounds by appending the generation
from one round to the context for the next. The decoding may stop after a fixed number of rounds or until a special
end-of-sequence token is encountered.

we propose to optionally train three separate mod-
els θ(0.4,0.6), θ(0.6,0.8), and θ(0.8,1.0) for the three
ranges.3 We still train a single model at pretraining
to save resources and only perform this step during
a final finetuning as described in §3.3.4 We start
the decoding at t = T and stop at t = 0.4T , saving
40% of the inference computation.5

3.2 Pretraining

Existing work on diffusion LMs is limited to mod-
est model sizes below the order of 1B parameters
(Li et al., 2022c; Han et al., 2022; Dieleman et al.,
2022). For example, SSD-LM has the same size
as RoBERTA-large (Liu et al., 2019) with 0.4B pa-
rameters. It is unclear whether, like autoregressive
LMs, diffusions LMs have the ability to scale.6 To
answer this question, we pretrain three versions of
SSD-2 with 0.1B, 2.7B, and 13B parameters, on
a subset of a large corpus C4 (Raffel et al., 2020).
Instead of pretraining from scratch, we initialize
these models using publicly available OPT mod-

3A similar setup has also been explored in image diffusion
as expert denoisers (Feng et al., 2022; Balaji et al., 2022).

4This setup could further be improved by considering mod-
els of different sizes for the three ranges where θ(0.4,0.6) and
θ(0.8,1.0) could contain fewer parameters as they arguably per-
form simpler tasks to reduce the effective inference time. We
leave it as future work.

5We report a comparison between the decoding speed of
SSD-2 and the original SSD-LM in §C

6In fact, Strudel et al. (2022) show for embedding-based
diffusion models, scaling up the embedding dimensions may
hurt the performance in certain cases.

els (Zhang et al., 2022).7 We consider a maximum
sequence length of 500 (up from 200 in SSD-LM),
with a diffusion block size B = 25. On the 13B
SSD-2 model for our main evaluation, we first do
50K warmup steps without self-conditioning and
then start a 100K-step pretraining with the full algo-
rithm. It uses approximately 38B tokens from the
C4 data in total. Other pretraining hyperparameters
can be found in §B.

Figure 3 shows the pretraining losses of SSD-2
over time. We report the losses after the warmup
stage and average them across batches with a self-
conditioning p = 0.5 as described in Figure 2.
Based on the trend of pretraining losses and the
scale of our pretraining data compared to recent
work,8 we conjecture that our SSD-2 models are
still considerably undertrained. Due to our com-
puting budget, we leave to future work a potential
continued pretraining over current SSD-2 models
on larger and better curated data.

3.3 Chat-style instruction finetuning

While Han et al. (2022) show the effectiveness of
pretrained SSD-LM in general-domain text con-
tinuation, in this work, we primarily investigate
the use of SSD-2 in downstream fine-tuning tasks,

7Han et al. (2022) find initializing from pretrained non-
diffusion models help the convergence of diffusion losses in
SSD-LM.

8For example, the LLaMA 13B model (Touvron et al.,
2023) uses 1T tokens from multiple corpora including C4,
whereas we use 38B tokens from C4 only.



Prompt: How can I improve my time management skills?

Time management is in short, an important skill to develop. A person needs to learn how to manage
their time more effectively. Here are a few techniques that can help you do that:

1. Prioritizing: One of the first things that you should try in order to improve your time
management skills is to identify which tasks have high priority and need to be given immediate
attention, and those that have low priority but can be postponed until a later date.
2. Multi-tasking: Although it might feel productive to handle more than one task at the same time
, it's actually less efficient at managing our time. It's better to focus on one thing at a time,
and fully dedicate 100% of our efforts to it.

3. Delegating: It's perfectly fine to say no to some tasks or even ask for help when needed. It's
sometimes considered a sign of weakness, but delegation will allow us to free up our time so

that we can work on the things that really matter.
4. Being organized: Making a list will not only help us keep track of tasks that need to get done
each day, but it will also help us avoid feeling overwhelmed by all the ideas and thoughts

running through our heads at any given moment.
By following these tips, you'll be able to significantly improve your time management skills!

Prompt: Write a symphony concert review, discussing the orchestra’s performance and overall
audience experience.

It was a magical night at Symphony Hall on Saturday, as the Boston Symphony Orchestra, under the
baton of Andin Mehta, performed Tchaikovsky's Symphonies No. 5 and No. 6. Tchaikovsky has always
been one of my favorite composers, and these two symphonies are among his most beautiful. They
are full of sweeping melodies, lyrical string writing, and lush orchestral textures that
transport you to a different world each time you listen.
And Mehta did an incredible job in leading the BSO through these masterpieces. He brought out
every nuance in the music - from the quiet tenderness of the first movement to the pulsing energy
of the Allegroagio to the breathtaking crescendo of the Finale.

The entire experience was absolutely magical: I couldn't have asked for a better way to spend a
Saturday night! And I would highly recommend this performance for anyone who is a fan of
Tchaikovsky or classical music in general.

Table 1: Qualitative examples of SSD-2-DOLLY’s responses to instructions. We show the first and last prompt from
the Vicuna test set. The outputs of our diffusion chat model have an overall reasonable format and content, though
being inaccurate in details like the conductor’s name and the tempo terminology.

Figure 3: Pretraining losses across training steps (with
self-conditioning, after the warmup stage). We con-
jecture that the models can benefit from more training
given more resources.

particularly on chat-style instruction following.9

9We make an additional change while finetuning SSD-2
to address end of sequence (EOS) issues in variable length
sequences in the downstream datasets. Since a sequence could
terminate in the middle of a diffusion block, while training, we
pad the sequence with the EOS token to the nearest boundary

We finetune the models with the DOLLY

dataset10 containing 15K human-collected instruc-
tions and responses (Databricks, 2023). We delib-
erately choose to finetune with DOLLY because as
opposed to other similar datasets (e.g. the ones
used to train models like Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023)), DOLLY has an
open-source license and does not depend on distil-
lations from OpenAI models. DOLLY covers cat-
egories like open/closed-QA, brainstorming, and
creative writing, though it may still be less power-
ful than the distillation-based data in terms of size
and quality.11

of a diffusion block of size B. We do not mask this padding
while computing the loss. We use the standard padding token
after the last diffusion block boundary. At inference, if the
generated text block argmax w̃c:c+B

0 in the final iteration
contains an EOS token, we prune the trailing tokens after the
first EOS token in the block.

10https://huggingface.co/datasets/databricks/
databricks-dolly-15k

11We did not explore other earlier instruction tuning data
like Wang et al. (2022) and Longpre et al. (2023) since they

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k


We finetune on 95% of the DOLLY data and use
the rest for held-out evaluation. We finetune with a
batch size of 384 and for 500 or 1000 steps for the
0.1B/2.7B/13B models. As a baseline, we finetune
the autoregressive model OPT (0.1B/2.7B/13B) on
DOLLY with the same setup.

3.3.1 SSD-2 as a diffusion chat model
In Table 1, we first show some qualitative examples
of our finetuned model, SSD-2-DOLLY’s outputs.
The outputs are generated by the 13B model to
the queries from the Vicuna test set (Chiang et al.,
2023), on open-ended question answering, creative
writing, etc. Manual observations by the authors
show that the generations have an overall reason-
able format and content.

The evaluation of chat models is an ongoing
research topic without a clear solution so far. On
one hand, classical automatic metrics may not fit
the open-ended nature of the input instructions. On
the other hand, a human evaluation can be hard to
scale and reproduce. In this work, we follow recent
work and apply state-of-the-art, production-level
language models such as GPT-4 (OpenAI, 2023)
to evaluate the quality of our models’ generations,
which have been shown to correlate highly with
human judgments and are easier to scale (Liu et al.,
2023). We leave a more extensive evaluation for
future work.

In Table 2, we compare the responses of SSD-2-
DOLLY and strong autoregressive counterparts in
pairs, prompting GPT-4 to rate the two responses
along with explanations. We adopt the prompt-
ing template by Chiang et al. (2023) (§D). We test
on a filtered DOLLY’s test set and Vicuna’s test
set.12 We find that against very strong baselines
pretrained on much larger datasets, our model still
wins on a moderate percentage of test examples.
Compared to LLaMA (which is trained on 1T to-
kens for much longer but not fine-tuned for chat),
SSD-2 performs marginally better. It is overall
mildly less preferred than the OPT-DOLLY model
on both DOLLY’s and Vicuna’s test sets, and signif-
icantly less than the Alpaca model. We emphasize

align less with the chat scenario of our interest. Furthermore,
such data can contain a considerable amount of questions that
have a very short answer (e.g., multiple choice). We leave for
future work to explore the applicability of diffusion on these
datasets.

12For DOLLY, we keep the test instructions that lead to re-
sponses with at least 50 tokens in the original data, to prevent
questions with trivial answers. For Vicuna’s test set, we re-
move 10 math and coding questions as our pretraining data
(C4) and finetuning data (DOLLY) do not represent these tasks.

that compared to OPT and LLaMA-based mod-
els, SSD-2 is currently pretrained with a relatively
small, single-corpus dataset,13 and finetuned on an
open-source dataset much smaller compared to its
non-open-source licensed counterparts that Alpaca
relies on. We believe if trained on similar datasets,
SSD-2 can fill the current performance gap consid-
erably.

Overall, in this section, we showed that SSD-2
can be trained as a chat model that performs rea-
sonably well and may close the gap with stronger
baselines using more comparable datasets. In the
next section, we will explore an inference-time col-
laboration setup between chat models and show
SSD-2’s advantage over the autoregressive base-
lines.

Comparing against Win Draw Lose

On Dolly’s test set
OPT-Dolly-13B 41.4% 0% 58.6%

On Vicuna’s test set
LLaMa-13B 51.4% 0% 48.6%
OPT-Dolly-13B 37.1% 0% 62.9%
Alpaca-13B 20.0% 1.4% 78.6%

Table 2: Quantitative evaluation of SSD-2’s outputs
against those of autogressive baselines based on ratings
of GPT-4. We report the percentage our SSD-2 wins /
draws / loses to the baseline models.

4 Inference-time collaboration

In the age of large language models, individual
users of NLP models may often face a dilemma
when they wish to customize the system with their
own data. On one hand, user-owned devices can-
not fit larger models and smaller models are not
powerful enough. On the other hand, uploading
their data to a commercial host of large models for
finetuning or long in-context learning is expensive
and also may not be desirable due to privacy risks.
We aim to address this dilemma by proposing a
collaborative inference-time algorithm between a
large general-purpose model (such as ones only ac-
cessible through an API) and a small model which
a user can customize.

As shown in SSD-LM (Han et al., 2022) and
prior work in other domains (Dhariwal and Nichol,

13Despite that we initialize SSD-2 with the OPT weights at
the beginning of pretraining, the diffusion objective is funda-
mentally different from a causal language modeling objective,
and the encoded knowledge of OPT may not transfer well.



2021), diffusion models are naturally suited to al-
low for controlling the properties of the model
outputs by interpolating the model outputs with
gradients from a control function such as a clas-
sifier. Follow-up studies have extended this idea
to classifier-free guidance where diffusion models
with and without controlling attributes can be in-
terpolated contrastively using a weighted sum of
their outputs (Ho and Salimans, 2021). We explore
a new setup of the latter idea for enabling collab-
oration between two versions of SSD-2 where we
interpolate the output logits of the models. Intrin-
sic to the diffusion paradigm, this interpolation is
sequence-level and through many iterations lever-
ages benefits of the bi-directional context.

4.1 Setup

We first define a core model θcore which is compu-
tationally expensive to train or deploy (e.g., a large
model which can only be loaded on mutiple GPUs).
We assume the model is good at general-domain
instruction following. We then define a user model
θuser which is computationally friendly for a typical
user to run on their personal device or a cloud de-
vice to their control. It allows incorporating data of
their specific interest which they may not prefer to
input to the large model. For both the core and user
models, we also assume they do not have access to
each others’ model parameters.

We also assume a prompting instruction winst
which both the models have access to, and expert
data Duser that only the user model and not the
core model has access to (see Figure 1). During
inference,

• θcore only takes in the prompt winst,
fθcore(winst).

• θuser can be finetuned with Duser, or use Duser
in in-context learning. In this work, we ex-
periment with the latter setup, where the user
model takes in both the user expert data and
the instruction as input, fθuser(Duser,winst).

• Additionally, we assume the model size
|θcore| ≫ |θuser|.

Specifically, we use the 13B-parameter SSD-2
finetuned with Dolly as θcore. We use the 0.1B fine-
tuned SSD-2 as θuser. We use DOLLY’s test prompts
as winst. A subset of DOLLY test examples is an-
notated with related Wikipedia passages to support
the output answers. We use these passages as a
proxy for Duser. Similar to our previous evaluation,
to avoid prompts with trivial answers, we addition-

ally constrain the original annotated response to
the test instructions to have at least 50 tokens.

4.2 Method
The collaboration between θcore and θuser is essen-
tially an ensemble of the model outputs. One promi-
nent way of approaching it is through a weighted
average of the models’ logits at inference time.14.
For autoregressive LMs, this averaging can be per-
formed at the token level where the logits are first
combined and then transformed into probability dis-
tribution like a product-of-experts ensemble (e.g.,
Liu et al. (2021)).

wc ∼ pcollab(w
c | Duser,winst,w

<c)

= softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)

+ λuser logitsθuser
(wc | Duser,winst,w

<c)]

We also consider an extension of this setup where
we add a contrastive term to θuser without the input
Duser, to promote the pointwise mutual information
between the expert data and the generation condi-
tioned on the instruction (Malkin et al., 2021).15

wc ∼ softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)

+ λuser(1 + α) logitsθuser
(wc | Duser,winst,w

<c)

− λuserα logitsθuser
(wc | winst,w

<c)]

For SSD-2, the process of generating tokens is
intrinsically different from autoregressive models.
However, since it preserves the notion of logits
in its iterative decoding procedure (wc:c+B

logits,t), we
propose a similar logits-averaging method for a dif-
fusion θcore and θuser, performing an ensemble for
a block of tokens at each diffusion noise timestep.

wc:c+B
core-logits,t = logitsθcore

(wc:c+B | winst,w
<c, w̃c:c+B

t )

wc:c+B
user-logits,t = logitsθuser

(wc:c+B | Duser,winst,w
<c, w̃c:c+B

t )

wc:c+B
¬user-logits,t = logitsθuser

(wc:c+B | winst,w
<c, w̃c:c+B

t )

wc:c+B
logits,t = (1− λuser)w

c:c+B
core-logits,t

+ λuser(1 + α)wc:c+B
user-logits,t − λuserαw

c:c+B
¬user-logits,t

The above procedure is instantiated through the
operation all-reduceΘ,λ(w

c:c+B
logits,t) in Figure 2. Fig-

ure 1 describes both the autoregressive and diffu-
sion collaboration in our setup. It is noteworthy

14Training-time ensemble can be achieved through methods
like parameter-averaging (Li et al., 2022a). However, it is
not the focus of this work since our models have drastically
different shapes and we do not assume the models have access
to the parameters of other models.

15We set the contrastive hyperparameter α = 1.0 through-
out the evalution, though the results with α = 0.0 follow a
similar trend.



λuser =
0

λuser =
0.1

λuser =
0.2

λuser =
0.3

λuser =
0.4

λuser =
0.5

λuser =
1.0

Relevance
OPT{core,user} 9.76 9.59 9.61 9.65 9.65 9.39 8.23
SSD-2{core,user} 9.72 9.65 9.91 9.85 9.64 9.52 7.16
∆collab OPT -0.17 -0.15 -0.11 -0.11 -0.37 -1.53
∆collab SSD-2 -0.07 +0.19 +0.13 -0.08 -0.20 -2.56
Factuality
OPT{core,user} 9.64 9.57 9.51 9.55 9.57 9.27 8.15
SSD-2{core,user} 9.34 9.49 9.63 9.64 9.56 9.48 7.26
∆collab OPT -0.06 -0.12 -0.08 -0.05 -0.29 -1.44
∆collab SSD-2 +0.14 +0.30 +0.31 +0.26 +0.15 -2.03
Informativeness
OPT{core,user} 9.30 9.20 9.12 9.27 9.06 8.95 7.41
SSD-2{core,user} 8.97 9.02 9.33 9.36 9.06 8.97 6.38
∆collab OPT -0.10 -0.18 -0.03 -0.24 -0.35 -1.89
∆collab SSD-2 +0.05 +0.36 +0.39 +0.09 0.00 -2.59
Coherence
OPT{core,user} 9.61 9.47 9.37 9.44 9.41 9.13 7.70
SSD-2{core,user} 9.41 9.35 9.65 9.59 9.25 9.17 5.84
∆collab OPT -0.14 -0.24 -0.17 -0.20 -0.48 -1.91
∆collab SSD-2 -0.06 +0.24 +0.18 -0.16 -0.24 -3.57
Understandability
OPT{core,user} 9.66 9.54 9.53 9.54 9.51 9.30 8.10
SSD-2{core,user} 9.53 9.56 9.72 9.67 9.42 9.34 6.21
∆collab OPT -0.12 -0.13 -0.12 -0.15 -0.36 -1.56
∆collab SSD-2 +0.03 +0.19 +0.14 -0.11 -0.19 -3.32

Table 3: The effect of inference-time collaboration between the large core model θcore and the small user model
θuser. A negative impact led by θuser to θcore is marked in red, and a positive impact in blue. SSD-2 is substantially
more collaborative than the autoregressive OPT baseline.

that for diffusion models, this manner of collabo-
ration is only straightforward in a simplex-based
model such as SSD-2. Diffusion variants proposed
in the literature operating on token embeddings are
not trivially suitable for it due to a mismatch in the
models’ embedding space.

4.3 Results

An inference-time collaboration is effective if the
core model θcore generates better responses after
collaborating with θuser. On the aforementioned
DOLLY test set with user-annotated Wikipedia pas-
sages as Duser, we evaluate the responses of both
SSD-2-DOLLY and OPT-DOLLY under the collabo-
ration setup, between a 13B core model and a 100x
smaller 0.1B user model.

We investigate a range of different weights λuser,

starting from 0 where the output of the collabora-
tion solely depends on the large θcore, and gradually
increasing λuser to incorporate more θuser. Similar
to our previous evaluation, we use GPT-3.5-turbo
to rate our models’ responses to the test instructions
on a scale of 10, towards the aspects of relevance,
factuality, informativeness, coherence, and under-
standability (§D).

Table 3 summarize the results of this experi-
ment. We observe that when λuser = 0 (θcore only,
no Duser incorporated), the OPT model finetuned
with DOLLY consistently outperforms our finetuned
SSD-2. This is in accordance with our previous
evaluation results in §3.3.1. However, for OPT,
collaborating with the small user model does not
improve the core model’s performance any further
across all considered weights. Within the exper-



imented weighting factors, λuser = 0.3 is a rela-
tively optimal value, though still leading to lower
scores than without collaboration.

In contrast, the small user model θuser improves
the core model’s performance in all tested at-
tributes in SSD-2. With appropriate weight factors
(λuser = 0.2, 0.3), the collaborated SSD-2 system
surpasses the best OPT performance in four of the
five metrics and matches the fifth. We highlight in
Table 3 the best absolute performance and the best
performance gain due to the collaboration. We ad-
ditionally show that when λuser = 1, the small user
model θuser alone performs worse in SSD-2 than
in OPT. This further indicates that the observed
performance gain comes from an effective collabo-
ration rather than a significantly better θuser.

Overall, though our diffusion chat model SSD-2
has a gap to close with strong autoregressive chat
models as a standalone model (§3.3.1), we show
that SSD-2 offers unique benefits in its ability to
effectively incorporate controls in an interesting
case of inference-time collaboration.

5 Related work

Diffusion-based language models have been receiv-
ing increasing attention as a potential alternative to
autoregressive language models. We identify three
main categories of diffusion language models based
on how they represent discrete data like text. Dis-
crete diffusion language models represent language
naturally as categorical data, while the diffusion
or noising steps are often formulated as transition
matrices (Hoogeboom et al., 2021; Austin et al.,
2021; He et al., 2022; Reid et al., 2022; Zheng
et al., 2023; Zhou et al., 2023b). Embedding-based
diffusion language models often learn a mapping
between the discrete language tokens and an em-
bedding latent space, and the diffusion process is
on the embedding space via a series of Gaussian
noise (Li et al., 2022c; Gong et al., 2022; Diele-
man et al., 2022; Gao et al., 2022; Lovelace et al.,
2022; Yuan et al., 2022; Lin et al., 2022; Ye et al.,
2023; Chen et al., 2023; Tang et al., 2023; Balagan-
sky and Gavrilov, 2023). In this work, we focus
on simplex-based diffusion language models that
project discrete tokens to a simplex space and per-
form the diffusion process with a simple Gaussian
noise (Han et al., 2022; Mahabadi et al., 2023).
Our proposed inference-time collaboration setup
is most straightforward to apply to simplex-based
diffusion language models, since models with dif-

ferent sizes share the same simplex (vocabulary)
space. Embedding-based models over different la-
tent representation spaces are not suitable for a
direct representation interpolation. Furthermore,
to the best of our knowledge, SSD-2 is the first
of this line of literature to pretrain and finetune a
diffusion language model as a chat model, encour-
aging future work to compare and improve over
our work.

With autoregressive language models, various
efforts have been made towards building chat-style
instruction following models based on open source
language models (Touvron et al., 2023; Biderman
et al., 2023) to replicate strong production-level
closed source counterparts (Ouyang et al., 2022;
OpenAI, 2023). Many of such work are concur-
rent to ours and collect high-quality finetuning
datasets by distilling prompts and responses from
OpenAI models (Taori et al., 2023; Chiang et al.,
2023; Xu et al., 2023). In this work, we delib-
erately seek fully open source data not depend-
ing on OpenAI models and adopt the DOLLY data
(Databricks, 2023). We expect our models can be
further improved with future releases of more cu-
rated chat-style instruction tuning datasets (Zhou
et al., 2023a).

One novel setup we explored in this work is
the inference-time collaboration between a large,
general-purpose diffusion chat model and small,
user-specific models. Inference-time collaboration
has been generally explored in autoregressive mod-
els via ensembles of logits, either in an interpola-
tion or contrastive manner (Liu et al., 2021; Malkin
et al., 2021; Li et al., 2022a; Peng et al., 2022;
Li et al., 2022b). In diffusion models, classifier-
free guidance in image generation (Ho and Sali-
mans, 2021) contrastively reconstruct representa-
tions with and without a controlling attribute using
a single model, whereas our work collaboratively
decode with models with different sizes and inputs.
We show an unique advantage of simplex-based
diffusion language models in such inference-time
collaboration compared to autoregressive language
models.

6 Conclusion

Inspired by recent efforts in autoregressive lan-
guage modeling, we present an exploratory step
towards pretraining a large simplex-based diffusion
language model SSD-2 and finetuning it with an
open-source chat-style instruction dataset. While



our diffusion chat model achieves a reasonable per-
formance in responding to both in-domain and out-
of-domain instructions, we find that it still has a
gap to close with strong autoregressive baselines
trained with significantly larger or better curated
data. However, in a motivated setup where large
general models and small user models are to collab-
orate with each other at inference time, we find
SSD-2 substantially more collaborative than its
autoregressive counterparts. These findings show
the promise of diffusion language models as an
instruction-following chat model and as a worthy
alternative to autoregressive language models.

References
Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel

Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
In Proc. NeurIPS.

Nikita Balagansky and Daniil Gavrilov. 2023. De-
mocratized diffusion language model. ArXiv,
abs/2305.10818.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vah-
dat, Jiaming Song, Qinsheng Zhang, Karsten Kreis,
Miika Aittala, Timo Aila, Samuli Laine, Bryan Catan-
zaro, Tero Karras, and Ming-Yu Liu. 2022. ediff-i:
Text-to-image diffusion models with an ensemble of
expert denoisers. ArXiv, abs/2211.01324.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Jiaao Chen, Aston Zhang, Mu Li, Alexander J. Smola,
and Diyi Yang. 2023. A cheaper and better diffu-
sion language model with soft-masked noise. ArXiv,
abs/2304.04746.

Ting Chen, Ruixiang Zhang, and Geo rey E. Hinton.
2022. Analog bits: Generating discrete data us-
ing diffusion models with self-conditioning. ArXiv,
abs/2208.04202.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Databricks. 2023. Databricks dolly 15k. https:
//huggingface.co/datasets/databricks/
databricks-dolly-15k.

Prafulla Dhariwal and Alex Nichol. 2021. Diffu-
sion models beat gans on image synthesis. ArXiv,
abs/2105.05233.

Sander Dieleman, Laurent Sartran, Arman Roshan-
nai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, A. Doucet, Robin Strudel, Chris Dyer,
Conor Durkan, Curtis Hawthorne, Rémi Leblond,
Will Grathwohl, and Jonas Adler. 2022. Con-
tinuous diffusion for categorical data. ArXiv,
abs/2211.15089.

Zhidan Feng, Zhenyu Zhang, Xintong Yu, Yewei
Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxi-
ang Liu, Weichong Yin, Shi Feng, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2022. Ernie-vilg
2.0: Improving text-to-image diffusion model with
knowledge-enhanced mixture-of-denoising-experts.
ArXiv, abs/2210.15257.

Zhujin Gao, Junliang Guo, Xuejiao Tan, Yongxin Zhu,
Fang Zhang, Jiang Bian, and Linli Xu. 2022. Dif-
former: Empowering diffusion model on embedding
space for text generation. ArXiv, abs/2212.09412.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2022. Diffuseq: Sequence to se-
quence text generation with diffusion models. ArXiv,
abs/2210.08933.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov.
2022. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and
modular control. ArXiv, abs/2210.17432.

Zhengfu He, Tianxiang Sun, Kuan Wang, Xuanjing
Huang, and Xipeng Qiu. 2022. Diffusionbert: Im-
proving generative masked language models with
diffusion models. ArXiv, abs/2211.15029.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. In Proc.
NeurIPS.

Jonathan Ho and Tim Salimans. 2021. Classifier-free
diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applica-
tions.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. 2022.
Video diffusion models. ArXiv, abs/2204.03458.

http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/databricks/databricks-dolly-15k


Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions. In Proc. NeurIPS.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. 2021. Diffwave: A versatile diffu-
sion model for audio synthesis. In Proc. ICLR.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke Zettle-
moyer. 2022a. Branch-train-merge: Embarrassingly
parallel training of expert language models. ArXiv,
abs/2208.03306.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy
Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. 2022b. Contrastive de-
coding: Open-ended text generation as optimization.
ArXiv, abs/2210.15097.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. 2022c. Diffusion-
lm improves controllable text generation. ArXiv,
abs/2205.14217.

Zheng-Wen Lin, Yeyun Gong, Yelong Shen, Tong Wu,
Zhihao Fan, Chen Lin, Weizhu Chen, and Nan Duan.
2022. Genie: Large scale pre-training for text gener-
ation with diffusion model. ArXiv, abs/2212.11685.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proc. ACL.

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen
Xu, and Chenguang Zhu. 2023. G-eval: Nlg evalua-
tion using gpt-4 with better human alignment. ArXiv,
abs/2303.16634.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won
Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret
Zoph, Jason Wei, and Adam Roberts. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. ArXiv, abs/2301.13688.

Justin Lovelace, Varsha Kishore, Chao gang Wan,
Eliot Shekhtman, and Kilian Q. Weinberger. 2022.
Latent diffusion for language generation. ArXiv,
abs/2212.09462.

Rabeeh Karimi Mahabadi, Jaesung Tae, Hamish Ivi-
son, James Henderson, Iz Beltagy, Matthew E.
Peters, and Arman Cohan. 2023. Tess: Text-
to-text self-conditioned simplex diffusion. ArXiv,
abs/2305.08379.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. 2021.
Coherence boosting: When your pretrained language
model is not paying enough attention. In Annual
Meeting of the Association for Computational Lin-
guistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Xiangyu Peng, Chen Xing, Prafulla Kumar Choubey,
Chien-Sheng Wu, and Caiming Xiong. 2022. Model
ensemble instead of prompt fusion: a sample-specific
knowledge transfer method for few-shot prompt tun-
ing. ArXiv, abs/2210.12587.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. JMLR.

Machel Reid, Vincent J. Hellendoorn, and Graham Neu-
big. 2022. Diffuser: Discrete diffusion via edit-based
reconstruction. ArXiv, abs/2210.16886.

Robin Strudel, Corentin Tallec, Florent Altch’e, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, L. Sifre, and
Rémi Leblond. 2022. Self-conditioned embedding
diffusion for text generation. ArXiv, abs/2211.04236.

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Ziqiang Cao, and M. Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! ArXiv, abs/2305.04465.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aur’elien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Is-
han Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar
Pal, M. Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur
Sampat, Savan Doshi, Siddharth Deepak Mishra, Su-
jan Reddy, Sumanta Patro, Tanay Dixit, Xudong
Shen, Chitta Baral, Yejin Choi, Noah A. Smith,
Hanna Hajishirzi, and Daniel Khashabi. 2022. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In Conference on
Empirical Methods in Natural Language Processing.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. ArXiv,
abs/2304.01196.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and
Mingxuan Wang. 2023. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises.
ArXiv, abs/2302.10025.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang,
and Songfang Huang. 2022. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. ArXiv,
abs/2212.10325.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. ArXiv,
abs/2205.01068.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong.
2023. A reparameterized discrete diffusion model
for text generation. ArXiv, abs/2302.05737.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023a. Lima:
Less is more for alignment. ArXiv, abs/2305.11206.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji rong Wen.
2023b. Diffusion-nat: Self-prompting discrete diffu-
sion for non-autoregressive text generation. ArXiv,
abs/2305.04044.

A Eliminating the sampling of context
size c in training

In the original training algorithm of SSD-LM (Han
et al., 2022), they first sample a context length c ∼
U(1, |w|−B), and then compute the diffusion loss
for reconstructing a block of length B following

that context. When the sequence length |w| is large,
this can lead to a drastic variance in the values of
c. Implemented naively in a distribution training
setup, this setup wastes computations, and reduces
the effective batch size considerably slowing down
training. We eliminate the sampling of the context
length c in SSD-2 by processing multiple c’s in
parallel. To facilitate this, we encode the context
w<c uni-directionally while preserving the locally
bi-directional attention for the diffusion generation
block wc:c+B .

More specifically, assume we have a prompt
w<c0 and want to form the same training ob-
jective as in Figure 2 on all of the following n
text blocks wc0:c0+nB . We prepare a context se-
quence w<c0+(n−1)B and obtain h<c0+(n−1)B as
described previously in §3.1. We prepare a diffu-
sion sequence w̃c0:c0+nB and obtain h̃

c0:c0+nB
as

described previously. Then a forward pass of θ
works as below.

o<c0+(2n−1)B = Transformer[

concat(h<c0+(n−1)B, h̃
c0:c0+nB

); δ(c0, n,B)]

wc0:c0+nB
logits,t = oc0+(n−1)B:c0+(2n−1)B

where δ(c0, n,B) is a special attention mask for
the transformer model, allowing a reuse of the en-
coded contexts while preserving the original train-
ing loss:

δi,j =


1j≤i if i < c0 + (n− 1)B.
1j≤c0+kB or c0+(n−1+k)B<j<c0+(n+k)B

if c0 + (n− 1 + k)B < i < c0 + (n+ k)B,
for 0 ≤ k < n.

Row i of δ indicates the attention-accessible po-
sitions for the i-th input token of the transformer.
For example, assume the original context is [a]
and the target generation is in two blocks [b, c] and
[d, e]. The input sequence to the SSD-2 transformer
model is [a, b, c, b̃, c̃, d̃, ẽ], and the attention mask
is:

δ(1, 2, 2) =



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 1 1 0 0
1 1 1 0 0 1 1
1 1 1 0 0 1 1


Comparing to regular language models, SSD-2 has
a uni-directional encoder and locally bi-directional



decoder. In a pilot pretraining session, we ob-
serve this change leads to a twice as fast training
speed compared to the original SSD-LM on a same
amount of training tokens.

B Pretraining hyperparameters

For the SSD-2 model of each size (13B/2.7B/0.1B),
we conduct two phases of training, a warmup phase
without self-conditioning and a formal phase with
self-conditioning using the complete algorithm
shown in Figure 2. Throughout all pretraining
setups, we use a max sequence length of 500, a
learning rate of 1e-4, and a weight decay of 0.01.
For the 13B SSD-2, we train with a warmup batch
size of 768 for 50,000 steps (19B tokens) and a
formal batch size of 384 for 100,000 steps (19B to-
kens). For the 2.7B SSD-2, we train with a warmup
batch size of 256 for 100,000 steps (13B tokens)
and a formal batch size of 1024 for 100,000 steps
(51B tokens). For the 0.1B SSD-2, we train with
a warmup batch size of 2,048 for 200,000 steps
(205B tokens) and a formal batch size of 2,048
for 100,000 steps (102B tokens). We use Nvidia
V100 GPUs in distributed training, and the differ-
ent batch size and number of warmup steps across
different models are due to the models’ memory
footprint and the relative cluster traffic during our
pilot pretraining. Future work with a dedicated
group of computing resources can explore pretrain-
ing for longer to mitigate the undertraining issue
mentioned in §3.2.

C Decoding speed

Though the decoding of SSD-2 is still significantly
slower than an autoregressive language model, it
achieves a great speedup compared to the original
SSD-LM. We use a same setup as the reported SSD-
LM decoding in Han et al. (2022). Conditioning
on 50 prompting tokens, we record the speed of
generating the next 25 tokens with timestep T =
1000 on a Nvidia V100 GPU.

The 0.4B SSD-LM takes 25 seconds. By con-
trast, though our 2.7B SSD-2 and 13B SSD-2 are
7x and 33x larger than SSD-LM, they only take 22
seconds and 48 seconds respectively, indicating a
significant speedup.16

16It is worth noting that we add a timestep embedding when
encoding the context in SSD-2 (§3.1). During inference across
timesteps, to reuse the encoded states of the context, we quan-
tize the input timestep t to the context timestep embedding
layer, tquantized = t−(t mod Q). We use Q = 50 throughout
the work and do not find the quantization to negatively impact

D Evaluation templates

We show in Table 4 the templates we used to evalu-
ate model responses via GPT-4 or GPT-3.5-turbo.
For the inference-time collaboration results, apart
from the five evaluated attributes described in §4.3,
in the template we additionally queried for a rating
of conciseness and human preference. However,
we consider conciseness a less relevant attribute
compared to the other attributes and GPT-3.5-turbo
less qualified to give ratings of human preference.
We filtered them out in our main results but they
hold a similar trend as the results of the other five
attributes.

the generation quality empirically.



Evaluation template used to compare SSD-2’s re-
sponses with baseline models’ responses (§3.3.1),
following Chiang et al. (2023).

[Question]
{test instruction}

[The Start of Assistant 1's Answer]
{baseline model's response}

[The End of Assistant 1's Answer]

[The Start of Assistant 2's Answer]
{SSD-2's response}

[The End of Assistant 2's Answer]

[System]
We would like to request your feedback on the
performance of two AI assistants in response to
the user question displayed above.
Please rate the helpfulness, relevance, accuracy,
level of details of their responses. Each
assistant receives an overall score on a scale
of 1 to 10, where a higher score indicates
better overall performance.
Please first output a single line containing
only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores
are separated by a space. In the subsequent line,
please provide a comprehensive explanation of
your evaluation, avoiding any potential bias and
ensuring that the order in which the responses
were presented does not affect your judgment.

Evaluation template used to rate responses from
either the baseline models or SSD-2 w.r.t. different
attributes (§4.3).

Rate the response below to an instruction, from
the aspects of relevance, factuality,
informativeness, conciseness, coherence,
understandability, and overall human preference,
each on a scale of 10 (format: x/10).

========

Instruction: {test instruction}

Response: {model response}

========

Please give the ratings now.

Table 4: Evaluation templates used in §3.3.1 and §4.3.
The first template was used with GPT-4 (tempera-
ture=0.2), whereas the second was used with GPT-3.5-
turbo (greedy) since we need significantly more queries
across different λuser’s. In the comparative evaluation
using the first template, flipping the order of the base-
line model’s response and SSD-2’s response leads to a
similar result.


